• Last time we showed one direction of the following equivalences:

Theorem

The following are equivalent:

1. $\omega_1^{\mathcal{L}[x]} < \omega_1$.
2. $\text{PSP}(\Sigma^1_2(x))$.
3. $\text{PSP}(\Pi^1_1(x))$.

• Namely, (1) implies (2), and (2) implies (3).
• To get (3) implies (1), we need concepts related to prewellorders,
• Basically, a way to talk about the complexity of functions $f : X \to \text{Ord}$ for $X \subseteq \mathcal{N}$.
• This motivates the notion of a *scale* as well as bounds on the lengths of prewellorders.
Adequate Pointclasses

Because we’ll be talking a bit in the abstract, it helps to talk about properties common to the bold and lightface pointclasses:

Definition

A pointclass $\Gamma \subseteq \mathcal{P}(\mathcal{N})$ is *adequate* iff

- Γ contains all computable relations;
- Γ is closed under computable substitution/preimages;
- Γ is closed under finite unions and intersections; and
- Γ is closed under bounded quantification (over ω).

- So clearly all borel, arithmetical, projective, and analytical pointclasses are adequate.
- Basically, simple operations don’t change complexity.
Defining Prewellorders

Definition

A prewellorder is a relation \leq that is transitive, total, and well-founded.

- This is a prewellorder in the following sense.

Result

Let \leq be a prewellorder on X. Define the equivalence relation $x \approx y$ iff $x \leq y \leq x$. Therefore \leq/\approx is a well-order on $\{[x]_\approx : x \in X\}$.

- So what do prewellorders look like?
- Basically just well-orders with clusters of loops, but which don’t fundamentally change the order.
- So how do we get examples of prewellorders?
Definition

A **prewellorder** is a relation \leq that is transitive, total, and well-founded.

Definition

A **norm** on a set X is a function $\varphi : X \to \text{Ord}$.

Result (19 C • 5)

Every prewellorder has a norm (its rank function). Moreover, every norm $\varphi : X \to \text{Ord}$ gives a prewellorder $x \leq y$ iff $\varphi(x) \leq \varphi(y)$.

- Note that the norm associated with a prewellorder isn’t unique.
- For example, $\varphi = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle\}$ and $\varphi' = \{\langle 0, 0 \rangle, \langle 1, 4 \rangle\}$ give the same prewellorder.
Defining Prewellorders

Result (19 C • 5)

Every prewellorder has a norm (its rank function). Moreover, every norm \(\varphi : X \to \text{Ord} \) gives a prewellorder \(x \leq y \iff \varphi(x) \leq \varphi(y) \).

- Also note that this gives lots of trivial prewellorders: any constant function \(\varphi : X \to \{\alpha\} \).
- On the other hand, assuming \(\varphi \) is injective, we get a well-order.
- Any set has lots of prewellorders, even in ZF.
- But we are interested in prewellorders with definability restrictions.
Definition

Let $\Gamma \subseteq \mathcal{P}(\mathcal{N})$ be a pointclass. $X \subseteq \mathcal{N}$ has a Γ-norm iff there’s a norm $\varphi : X \to \text{Ord}$ such that \leq_φ and $<_\varphi$ are both in Γ, defined by

\[
\begin{align*}
 x \leq_\varphi y & \quad \text{iff} \quad x \in X \land (y \in X \rightarrow \varphi(x) \leq \varphi(y)) \\
 x <_\varphi y & \quad \text{iff} \quad x \in X \land (y \in Y \rightarrow \varphi(x) < \varphi(y))
\end{align*}
\]

- Let’s consider the complexity here: $x \leq_\varphi x$ iff $x \in X$ so having a Γ-norm implies $X \in \Gamma$ (if Γ is adequate).
- We know the constant 0 function $\varphi = \text{const}_0$ is a norm on every set, but it may not have the best complexity:
 - $\text{const}_0(x) < \text{const}_0(y)$ is always false so that $x <_\varphi y$ iff $x \in X$ and $y \notin X$.
 - This requires complexity $\Gamma \land \neg \Gamma$.

Corollary

If $\Delta \subseteq \mathcal{P}(\mathcal{N})$ is adequate with $\neg \Delta = \Delta$, then every $X \in \Delta$ has a Δ-norm. E.g. each Δ^1_n has this.
Definition

$\Gamma \subseteq \mathcal{P}(\mathcal{N})$ has the \textit{prewellordering property}, $\text{PWO}(\Gamma)$, iff every $X \in \Gamma$ has a Γ-norm.

Corollary

- $\text{PWO}(\Delta^0_\alpha)$ and $\text{PWO}(\Delta^1_n)$ for every $\alpha < \omega_1$, $n < \omega$ (and their \textit{boldface} counterparts).
- $\text{PWO}(\Sigma^1_0)$ (and $\text{PWO}(\Sigma^0_1)$)

Proof.

- $A \in \Sigma^1_0 = \Sigma^0_1$ is $\bigcup_{n \in \omega} \mathcal{N}_f(n)$ for some computable f.
- Define $\varphi(x)$ as the least $n \in \omega$ with $x \in \mathcal{N}_f(n)$.
- This is a Σ^1_0-norm: each cone is Δ^0_1

\[
x \preceq_{\varphi} y \text{ iff } x \in A \land \exists n \in \omega \, (x \in \mathcal{N}_f(n) \land \forall m < n \, (y \notin \mathcal{N}_f(m)))
\]

\[
x \preceq_{\varphi} y \text{ iff } x \in A \land \exists n \in \omega \, (x \in \mathcal{N}_f(n) \land \forall m \leq n \, (y \notin \mathcal{N}_f(m)))
\]
The Prewellordering Property

Definition

\[\Gamma \subseteq \mathcal{P}(\mathcal{N}) \] has the *prewellordering property*, \(\text{PWO}(\Gamma) \), iff every \(X \in \Gamma \) has a \(\Gamma \)-norm.

A much harder pointclass to show PWO for is \(\Pi_1^1 \).

Theorem

\(\text{PWO}(\Pi_1^1) \)

To prove this, recall the following nice properties for \(\Pi_1^1 \)-sets.

Lemma

Every \(X \in \Pi_1^1 \) *is the computable preimage of WO.*

This is quite nice for us, because we already showed that WO has a norm on it: \(x \mapsto \|x\| \) where \(\|x\| \) is the length of the well-order coded by \(x \in \text{WO} \).

Lemma (19 B • 8 and 19 C • 8)

\(\psi(x) = \|x\| \) *is a* \(\Pi_1^1 \)-norm on WO.*
The Prewellordering Property

Lemma

Every $X \in \Pi^1_1$ *is the computable preimage of* WO, *and* $\psi(x) = \|x\|$ *is a* Π^1_1-*norm on* WO.

Theorem

$PWO(\Pi^1_1)$

Proof.

As a result, we can define a Π^1_1-norm for $X \in \Pi^1_1$ as follows:

- Let $X = f^{-1}"WO$ for $f : \mathcal{N} \rightarrow \mathcal{N}$ computable.
- Define $\varphi = \|f \upharpoonright X\|$. We get that

$$x \leq_\varphi y \iff f(x) \leq_\psi f(y)$$

$$\iff f(x) \in WO \land (f(y) \in WO \rightarrow \|f(x)\| \leq \|f(y)\|)$$

$$\iff x \in X \land (y \in X \rightarrow \varphi(x) \leq \varphi(y)).$$
The Prewellordering Property

This also lifts to Σ_2^1.

Corollary

$$\text{PWO}(\Sigma_2^1) \text{ (and PWO}(\Sigma_2^1))$$

The idea is actually quite easy and nice, having the following form.

Theorem

If Γ is adequate and X has a Γ-norm, then $\exists^N X$ has a $\exists^N \forall^N \Gamma$-norm. So $\text{PWO}(\Gamma)$ implies $\text{PWO}(\exists^N \forall^N \Gamma)$.

Proof.

- Let φ be a Γ-norm for X.
- Define $\psi : \exists^N X \to \text{Ord}$ just by
 $$\psi(x) = \min\{\varphi(x, y) : \langle x, y \rangle \in X\}.$$
- This is a $\exists^N \forall^N \Gamma$-norm:
 $$x \leq_{\psi} y \quad \text{iff} \quad \exists z \forall t \left(\langle x, z \rangle \leq_{\varphi} \langle y, t \rangle\right)$$
 $$x <_{\psi} y \quad \text{iff} \quad \exists z \forall t \left(z = t \lor \langle x, z \rangle <_{\varphi} \langle y, t \rangle\right).$$
The Prewellordering Property

Question

We know PWO(Σ^1_2). Does this imply PWO(Σ^1_1) just because $\Sigma^1_1 \subseteq \Sigma^1_2$?

- The answer here is no: every Σ^1_1-set has a Σ^1_2-norm, but not necessarily a Σ^1_1-norm.
- In fact, these three pointclasses (Σ^1_0, Π^1_1, and Σ^1_2) are the only three analytical pointclasses we can show PWO for under ZFC:

\[
\begin{array}{c}
\Sigma^1_0 \\
\Sigma^1_1 \\
\Sigma^1_2 \\
\Sigma^1_3 \\
\Sigma^1_4 \\
\Pi^1_0 \\
\Pi^1_1 \\
\Pi^1_2 \\
\Pi^1_3 \\
\Pi^1_4 \\
\ldots
\end{array}
\]
The Prewellordering Property

- In particular (assuming $\text{Con}(\text{ZFC + PD})$), $\text{PWO}(\Sigma^1_n)$ is independent for odd $n > 2$.
- For even $n > 2$, Harrington has some (unpublished) work which gives a model where $\text{PWO}(\Sigma^1_n)$ and $\text{PWO}(\Pi^1_n)$ both fail.
One question that arises from this picture is can we have both $\text{PWO}(\Sigma^1_n)$ and $\text{PWO}(\Pi^1_n)$? The answer is “no”, and this is a result of properties more topological in nature.

Theorem (19D • 2, 4, 6, and 7)

Let Γ be an adequate pointclass. Therefore

- $\text{PWO}(\Gamma)$ implies Γ has the reduction property.
- Γ has the reduction property implies $\neg \Gamma$ has the separation property.
- If Γ has a universal set, Γ cannot have both the reduction and separation properties.
- Every σ-algebra (e.g. Δ^1_n) has both the reduction and separation properties.

What these properties

- What these properties *are* exactly isn’t too important for us.
- They at least establish $\neg (\text{PWO}(\Gamma) \land \text{PWO}(\neg \Gamma))$ for $\Gamma = \Sigma^1_n$.
- They also tell us we shouldn’t be considering Δ^1_n, since they trivially have these properties.
Theorem

The following are equivalent:

1. \(\omega_1^{L[x]} < \omega_1 \).
2. \(\text{PSP}(\Sigma^1_2(x)) \).
3. \(\text{PSP}(\Pi^1_1(x)) \).

- Let’s get back on track.
- The main way we’ll show (3) implies (1) above is to use \(\Pi^1_1 \)-uniformization (aka Kondô’s theorem).
- In general, the way to show \(\Gamma \)-uniformization is with the scale property on \(\Gamma \).
- As usual, we can prove the scale property on \(\Pi^1_1 \) and \(\Sigma^1_2 \), but we can’t go beyond this in ZFC alone.
- Determinacy axioms can push this further with the same alternating pattern as with PWO.
Introducing Scales

Definition

Let $X \subseteq \mathcal{N}$. A scale on X is a sequence $\vec{\varphi} = \langle \varphi_n : n < \omega \rangle$ such that

- each φ_n is a norm on X;
- for all convergent $x \in \omega \times X$, if each $\varphi_n \circ x$ is eventually constant then
 - $\lim x \in X$ and
 - (lower semi-continuity) $\varphi_n(\lim x) \leq \lim(\varphi_n \circ x)$ for each $n < \omega$.

Without lower semi-continuity, $\vec{\varphi}$ is called a semi-scale.

- As before, we are interested in scales with definability restrictions.
- We can easily get scales on any X we want by using AC.
- $f : X \to |X|$ a bijection with $\varphi_n = f$ for every n works.
- If $x \in \omega \times X$ is convergent and $f \circ x$ is eventually constant then x is eventually constant. So $\lim x \in \text{im } x \subseteq X$.
- Lower semi-continuity is also easy in this case: $f(\lim x) = \lim(f \circ x)$.
- As before, we are interested in scales with definability restrictions.
Introducing Scales

- So what are some less trivial ways to get scales?
- How could scales possibly be useful?

Result (19 E • 3)

For $X \subseteq \mathcal{N}$ and $\kappa \geq \aleph_0$, the following are equivalent.

- X has a scale $\bar{\phi}$ where $\varphi_n(x) < \kappa$ for all $n < \omega$, $x \in X$.
- X has a semi-scale where $\bar{\phi}$ where $\varphi_n(x) < \kappa$ for all $n < \omega$, $x \in X$.
- X is κ-suslin.

- Suslin representations of sets are very important because they allow us to ask questions about trees instead of whatever weird reals we have.
- We will only prove the downward direction. The upward isn’t very interesting to me.
Result (19 E • 3)

If X has a semi-scale bounded by κ then X is κ-suslin.

Proof.

- A scale is a semi-scale so one direction is obvious.
- If $\vec{\varphi}$ is a semi-scale, consider the tree building up sequences of elements and their norms: $\langle \tau, \rho \rangle \in \omega \times \omega \kappa$ is in T iff there’s an $x \in X$ with
 - $\tau \triangleleft x$;
 - $\rho = \langle \varphi_n(x) : n < \text{lh}(\tau) \rangle$.
- This is a tree over $\omega \times \kappa$. So $p[T]$ is κ-suslin.
- $\langle x, \langle \varphi_n(x) : n < \omega \rangle \rangle \in [T]$ for any $x \in X$ so $X \subseteq p[T]$.
Result (19 E • 3)

If X has a semi-scale bounded by κ then X is κ-suslin.

Proof.

- $\langle \tau, \rho \rangle \in T$ iff there's an $x \in X$ with
 - $\tau \triangleleft x$;
 - $\rho = \langle \varphi_n(x) : n < \text{lh}(\tau) \rangle$.
- To show $p[T] \subseteq X$, if $x \in p[T]$, then we get a sequence $\langle x_n \in X : n < \omega \rangle$ witnessing $x \upharpoonright n \in pT$.
- $x \upharpoonright n = x_n \upharpoonright n$ so $\langle x_n \in X : n < \omega \rangle$ converges to x with $\langle \varphi_n(x_m) : m < \omega \rangle$ eventually determined and thus constant.
- Hence $\lim x_n = x \in X$. \hfill \blacksquare
• The motivating result for PWO was that WO had a Π^1_1-norm given by $x \mapsto \|x\|$.
• We get a similar result for scales.

Result (19 E • 4)

There is a scale on WO. In fact, the relations on triples $\langle x, y, n \rangle \in \mathcal{N}^2 \times \omega$ are both Π^1_1:

- $x \leq \varphi_n y$ iff $x \in WO \land (y \in WO \rightarrow \varphi_n(x) \leq \varphi_n(y))$
- $x < \varphi_n y$ iff $x \in WO \land (y \in WO \rightarrow \varphi_n(x) \leq \varphi_n(y))$.

• What are φ_n? They code $\|x\|$ and its initial segment “up to n”.
• More precisely, we can consider

$$(E_x)_{<n} = \{\langle a, b \rangle : a \ E x \ b \ E x \ n \neq b\}.$$

• These $(E_x)_{<n}$ tell us how E_x is built up.
• So we define $\varphi_n(x) = \text{code}(\|E_x\|, \|(E_x)_{<n}\|)$.
• Showing $\langle \varphi_n : n < \omega \rangle$ is in fact a scale is a boring, technical process.
• This motivates the concept of a Γ-scale.

Definition

Let Γ be a pointclass. A Γ-scale is a scale $\bar{\varphi}$ on a set X such that the relations on $\langle x, y, n \rangle \in \mathbb{N}^2 \times \omega$ are in Γ:

\[
\begin{align*}
ex & \leq \varphi_n y \iff x \in X \wedge (y \in X \rightarrow \varphi_n(x) \leq \varphi_n(y)) \\
ex & < \varphi_n y \iff x \in X \wedge (y \in X \rightarrow \varphi_n(x) \leq \varphi_n(y)).
\end{align*}
\]

• So for adequate pointclasses, X having a Γ-scale implies $X \in \Gamma$ by $x \in X$ iff $x \leq_{\varphi_0} x$.

• We can also show that every Π^1_1-set has a Π^1_1-scale in the same way as with PWO.
Theorem

Every Π^1_1-set has a Π^1_1-scale, i.e. the scale property holds for Π^1_1.

Proof.

- Let $A \in \Pi^1_1$, $A = f^{-1}\text{"WO}$ for some computable $f : \mathcal{N} \to \mathcal{N}$.
- Let $\tilde{\psi}$ a Π^1_1-scale on WO.
- We can form $\langle \psi_n \circ f : n < \omega \rangle$ and get a Π^1_1-scale on A.

- We can also show the scale property for Σ^1_2.
- Indeed, we get the same restrictions as with PWO: after Σ^1_2,
 - the scale property is independent of ZFC;
 - PD gives a full zig-zag pattern; and
 - $V = L$ gives an initial zig followed by a line.
- Again, we mostly care about scales for now to get uniformization.
Definition

Let $X \subseteq A \times B$. A uniformization is a function $f \subseteq X$ such that $\text{dom}(f) = \text{dom}(X)$.

For Γ a pointclass, Γ-uniformization is the statement that every $X \in \Gamma$ has a uniformization $f \in \Gamma$.

Let’s prove Π^1_1-uniformization now that we have the scale property.

Theorem

Π^1_1-uniformization holds (and \boxtimes^1_1-uniformization).

- Let $A \in \Pi^1_1$ be arbitrary and let $A''x = \{y \in \mathcal{N} : \langle x, y \rangle \in A\}$.
- To get a uniformization, we need to find a unique $y \in A''x$ defined from x.
- Uniqueness is the easy part. The hard part is showing existence and ensuring the resulting f is Π^1_1 with $\text{dom}(f) = \text{dom}(A)$.
- That is where scales come in.
Theorem

Π^1_1-uniformization holds (and Π^1_1-uniformization).

- Let $x \in A$ be arbitrary and $\bar{\varphi}$ a Π^1_1-scale on $A \in \Pi^1_1$.
- Set $f(x) = y$ iff $\langle x, y \rangle \in A$ and for all $z \in \mathcal{N}$ and all $n < \omega$,
 - If $(*) \langle x, z \rangle \in A, z \upharpoonright n = y \upharpoonright n$, and $\varphi_m(x, z) = \varphi_m(x, y)$ for all $m < n$,
 - Then $(**)$ $y(n) < z(n)$, or else $y(n) = z(n) \land \varphi_n(x, y) \leq \varphi_n(x, z)$.
- Basically, y is lexicographically least among those whose first norms agree with y’s initial first segments.
- Let’s show that this indeed uniquely defines a y (if there exists one).
- Suppose this holds for two $y_1, y_2 \in \mathcal{N}$ and let N be their first disagreement.
- $(*)$ therefore holds inductively for $n \leq N$ (consider $(*)$ with $n = 0$ and then $(**)$ with $n = 0$ to get $\varphi_n(x, y_1) = \varphi_n(x, y_2)$)
- $(**)$ thus holds. But applying $(*)$ with $z = y_1$ and $y = y_2$ gives $y_2(N) < y_1(N)$ and vice versa yields $y_1(N) < y_2(N)$, a contradiction.
Theorem

Π^1_1-uniformization holds (and Σ^1_1-uniformization).

- Set $f(x) = y$ iff $\langle x, y \rangle \in A$ and for all $z \in \mathcal{N}$ and all $n < \omega$,

 $\text{If } (*) \langle x, z \rangle \in A, z \upharpoonright n = y \upharpoonright n, \text{ and } \varphi_m(x, z) = \varphi_m(x, y) \text{ for all } m < n,

 \text{Then } (**) y(n) < z(n), \text{ or else } y(n) = z(n) \land \varphi_n(x, y) \leq \varphi_n(x, z)$.

- It’s not hard to see that $(*)$ is Σ^1_1 and $(**)$ is Π^1_1.

- Thus f (if well-defined) will be $\forall \mathcal{N} (\neg \Sigma^1_1 \lor \Pi^1_1) = \Pi^1_1$.

- So we need to show there is such a y, which is much harder.

- We use the scale to do the heavy lifting in the construction and ensure the limit (i.e. end result) is in A.

- Start out with $A_0 = A''x$.

- At stage $n + 1$, we first consider the set of all $y \in A_n$ with minimal $\varphi_n(x, y)$ (among other elements in A_n).

- Then we thin out that set to only consider the ys with minimal $y(n)$. The result is A_{n+1}.

- We now want a $y \in \bigcap_{n<\omega} A_n$.
Theorem

Π^1_1-uniformization holds (and Σ^1_1-uniformization).

- Start out with $A_0 = A''x$.
- At stage $n + 1$, we first consider the set of all $y \in A_n$ with minimal $\varphi_n(x, y)$ (among other elements in A_n).
- Then we thin out that set to only consider the ys with minimal $y(n)$. The result is A_{n+1}.
- Any sequence $\langle y_n \in A_n : n < \omega \rangle$ is necessarily convergent since we’re deciding more and more when moving from A_n to A_{n+1}.
- Such a sequence also has $\langle \varphi_n(y_k) : k < \omega \rangle$ as eventually constant because again we’re deciding more of the norm moving from A_n to A_{n+1}.
- As a scale, it follows that $y = \lim_{n \to \infty} y_n \in A$ and an easy induction shows it satisfies the definition of $f(x) = y$.
- Hence f is well-defined and a Π^1_1-uniformization of A. \[\]
• Again, we have the same picture with uniformization as with PWO, scales, and other properties: Σ^1_2 is the limit of what can be shown in ZFC.

• The zig-zag (or lackthereof in L) of PD also holds with uniformization.

• This is quite useful with determinacy because uniformization is a choice-like principle telling us not only that we can pick out an element, but we can do so in a simply definable way.

• Let’s return to the main goal here:

Theorem

The following are equivalent:

1. For every $x \in \mathcal{N}$, $L[x] \models \omega^V_1$ is inaccessible’.
2. $\text{PSP}(\Pi_1^1)$.
What was all this about again?

- Restated, the main goal is the following.

Theorem

\[
\text{PSP}(\Pi^1_1(x)) \text{ implies } \omega^L_1[x] < \omega_1 \text{ for every } x \in \mathcal{N}.
\]

Proof.

- Let \(x \in \mathcal{N} \) and suppose \(\omega^L_1[X] = \omega_1 \), aiming to show \(\neg \text{PSP}(\Pi^1_1(x)) \).
- For each \(\alpha < \omega^L_1[x] \), let \(f(\alpha) \) be the \(\prec_{L[x]} \)-least real in \(\text{WO} \cap L[x] \) coding \(\langle \alpha, \in \rangle \).
- Set \(X = f^"\omega^L_1[x] \) so that every ordinal is coded by an element of \(X \).
- We actually considered this set already to show that \(L \models \neg \text{PSP}(\Sigma^1_2) \).
- The relevant theorems generalize to show
 1. \(X \in \Sigma^1_2(x) \) is uncountable (since \(\aleph^L_1[x] = \aleph_1 \)), and
 2. \(X \) has no uncountable \(\Sigma^1_1 \)-subset (by the Boundedness lemma).
What was all this about again?

Theorem

\[\text{PSP}(\Pi^1_1(x)) \text{ implies } \omega_1^{L[x]} < \omega_1 \text{ for every } x \in \mathcal{N}. \]

Proof.

- \(X = f'' \omega_1^{L[x]} \) where \(f(\alpha) \in \text{WO} \cap L[x] \) codes \(\alpha \).
 1. \(X \in \Sigma^1_2(x) \) is uncountable (since \(\aleph_1^{L[x]} = \aleph_1 \)), and
 2. \(X \) has no uncountable \(\Sigma^1_1 \)-subset (by the Boundedness lemma).
- Let \(X = pY \) for \(Y \in \Pi^1_1(x) \).
- By \(\Pi^1_1(x) \)-uniformization, we get a \(\Pi^1_1 \)-function \(f \subseteq Y \) with \(\text{dom}(f) = X \).
- Hence \(|f| = |X| = \aleph_1 \).
- \(f \) also can’t have any perfect subset. To see this, firstly any perfect subset must be closed and uncountable.
- But any closed \(g \subseteq f \) has \(\text{dom}(g) \in \Sigma^1_1 \) and is thus countable since \(\text{dom}(g) \subseteq X \) and (2) holds.
- Thus \(\neg \text{PSP}(\Pi^1_1(x)) \).
• Leo Harrington, The constructible reals can be (almost) anything, 1974. Unpublished.

